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2 Laboratoire de Minéralogie Cristallographiec , Universités Paris VI & VII, Tour 16, 4 place Jussieu,

75252 Paris Cedex 05, France

Received 3 March 1999

Abstract. The differential absorption and the differential change in the polarization state of an X-ray beam
propagating inside a gyrotropic crystal are described using a 4×4 Müller matrix, the 16 elements of which
are related to the anisotropic components of the multipolar polarizability tensors at the absorbing site.
Analytical expressions are given up to third order for X-ray linear and circular dichroism, X-ray optical
rotation and X-ray circular polarimetry in transmission. The same formalism is extended to discuss Fluo-
rescence detected dichroism spectra with or without polarization analysis of the fluorescence. Fluorescence
detected dichroism is strictly proportional to dichroism measured in the transmission geometry only for
uniaxial crystals. In biaxial crystals, the tiny effects of X-ray gyrotropy are swamped by large linear dichro-
ism signals due to the imperfect polarization transfer function of Bragg monochromators. Second order
effects should also be taken into consideration. Our general formulation of linear and circular dichroism
includes terms of odd parity with respect to the action of the time reversal operator: such terms cannot
contribute to natural dichroism but can be activated by a magnetic field. The terms responsible for X-ray
magnetic circular dichroism are well known but non-reciprocal X-ray gyrotropy effects are also predicted
in magnetic crystals of appropriate symmetry.

PACS. 33.55.Ad Optical activity, optical rotation; circular dichroism – 41.50.+h X-ray beams and X-ray
optics – 78.70.Dm X-ray absorption spectra

1 Introduction

We have produced recently the very first unambiguous
experimental evidence [1] of Fluorescence detected X-ray
Natural Circular Dichroism (Fd-XNCD) in a uniaxial gy-
rotropic crystal of lithium iodate (α− LiIO3), i.e. a crys-
tal known to exhibit a large specific rotativity together
with a very strong non-linear susceptibility in the visi-
ble range. With such thick and heavily absorbing crystals,
dichroism experiments can hardly be performed in trans-
mission and it is much simpler to record differential X-
ray fluorescence excitation spectra using an incident X-ray
beam which is either right - or left - circularly polarized. Of
course, in the case of a uniaxial crystal such as α−LiIO3,
it is preferable to keep the direction of the incident X-ray
beam colinear with the optical axis of the crystal. The
same geometry was retained to detect Fd-XNCD in a pair
of enantiomeric crystals of a stereogenic organometallic
complex in which the absorbing metal center was sitting in
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a chiral ligand field [2]. In both experiments, the origin of
XNCD was assigned to electric dipole - electric quadrupole
(E1.E2) interference terms which contribute to the pseu-
dodeviator part of the optical activity tensor. A theory of
XNCD has been developed in the framework of multiple
scattering (MS) and has been published in a previous issue
of the same journal [3].

Unfortunately, one is running into serious complica-
tions as soon as the isotropy is lost in a plane perpendic-
ular to the direction of propagation of the incident X-ray
beam. It is well documented from classical optics that op-
tical activity, linear dichroism and birefringence may oc-
cur all together in biaxial crystals and that the last two
effects usually swamp completely those of gyrotropy: very
sophisticated experimental techniques are then required
to disentangle what is truly due to gyrotropy in a CD
experiment. On the other hand, light propagating inside
a biaxial crystal does not keep a constant polarization
state [4]. Since this point was systematically neglected
in all previous X-ray studies on oriented crystals [5,6],
we found attractive to analyze carefully what is really
measured when a polarized X-ray beam propagates in-
side a biaxial, gyrotropic crystal. Recall that a somewhat
mysterious “X-ray crystal optics effect” was predicted to
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occur in all biaxial crystals [7]: the origin of this second
order effect will become fully transparent from our analy-
sis. It has also the practical consequence that fluorescence
detected dichroism spectra cannot be anymore rigorously
equivalent to dichroism spectra recorded in a transmission
geometry. Nevertheless, we like to point out that comple-
mentary information could be extracted from a detailed
analysis of the polarization components of the X-ray flu-
orescence photons emitted in a given direction.

The organization of the paper is the following: in
Section 2, the differential absorption and the differential
change in the polarization state of the X-ray beam are
described using a 4 × 4 Müller matrix, the 16 elements
of which are related to the anisotropic components of the
multipolar polarizability tensors at the absorbing site. We
propose analytical expressions of the Stokes components
at any point along the propagation axis of the X-ray beam
inside the crystal. In Section 3, we derive general formula
for X-ray Circular Dichroism (XCD), X-ray Linear Dichro-
ism (XLD), X-ray Optical Rotation (XOR), X-ray Circu-
lar Polarimetry (XCP) for a transmission geometry. In
Section 4, the same formalism is extended to calculate
Fd-XCD spectra with (or without) polarization analysis.
Finally, we discuss in Section 5 the consistency of all our
results with respect to symmetry, rotational invariance
and time reversality properties and we briefly review what
are the implications regarding magnetic crystals.

2 Stokes vector in anisotropic absorbing
media

Let us consider a quasi monochromatic X-ray beam prop-
agating along the z direction through a crystal plate of
finite thickness d and which is infinitely wide in the {x, y}
plane. As a first step, we wish to describe the differen-
tial absorption and the differential change of polarization
induced by a thin layer of infinitesimal thickness dz.

2.1 Differential Müller equation

We found most convenient to extend into the X-ray range
the theory of refringent scattering which was elaborated
by Buckingham et al. [8–10] for optical spectroscopy. Re-
call that an important implication of this theory is that
all modes propagating inside the crystal should be parallel
to the wave vector of the incident beam: this requirement
is quite acceptable in the X-ray range where the real part
of the refractive index n = 1 − δ is very close to unity(
δ ≤ 10−5

)
with the practical consequence that critical an-

gles for X-ray reflection θc =
√

2δ are in the range of a few
mrad. Thus, for a transverse polarized wave propagating
along the direction n, the complex scattering tensor a∗αβ
can reasonably be expanded as:

a∗αβ= α∗αβ+ζ∗αβγnγ+Q∗αγγβ
[
n2
γ

]
+... (1)

where: α, β 6= γ. In equation (1), α∗αβ and Q∗αγγβ are re-
spectively the complex electric dipole polarizability ten-
sor and the complex electric quadrupole polarizability

tensor, the detailed expressions of which are given in
Appendix A1. There have been ample experimental ev-
idence produced in these recent years [5,11–15] that X-
ray absorption spectroscopy is sensitive to the electric
quadrupole (E2.E2) cross sections: this implies that the
last term of equation (1) should not be neglected in the
X-ray range. It is precisely the aim of this paper to show
that the complex Gyrotropy tensor ζ∗αβγ , which is written
in full detail in Appendix A1, can also play a significant
role in X-ray absorption or excitation spectroscopies.

For biaxial crystals which are anisotropic in a plane
perpendicular to the direction of propagation (0, 0, 1), it
is most appropriate to introduce the following complex
tensors:

t∗ = t− it′

=
[
α∗xx+α∗yy

]
+
[
ζ∗xxz+ζ∗yyz

]
+
[
Q∗xzzx+Q∗yzzy

]
(2)

u∗ = u− iu′

=
[
α∗xx−α∗yy

]
+
[
ζ∗xxz−ζ∗yyz

]
+
[
Q∗xzzx−Q∗yzzy

]
(3)

v∗ = v−iv′

=
[
α∗xy+α∗yx

]
+
[
ζ∗xyz+ζ∗yxz

]
+
[
Q∗xzzy+Q∗yzzx

]
(4)

w∗ = w−iw′

=
[
α∗xy−α∗yx

]
+
[
ζ∗xyz−ζ∗yxz

]
+
[
Q∗xzzy−Q∗yzzx

]
(5)

and by direct identification, one obtains:

t = + [αxx(f) + αyy(f)] + [ζxxz(f) + ζyyz(f)]
+ [Qxzzx(f) +Qyzzy(f)] (6)

t′ = − [αxx(g) + αyy(g)]− [ζxxz(g) + ζyyz(g)]
− [Qxzzx(g) +Qyzzy(g)] (7)

u = + [αxx(f)− αyy(f)] + [ζxxz(f)− ζyyz(f)]
+ [Qxzzx(f)−Qyzzy(f)] (8)

u′ = − [αxx(g)− αyy(g)]− [ζxxz(g)− ζyyz(g)]
− [Qxzzx(g)−Qyzzy(g)] (9)

v = +2 [αxy(f) + ζxyz(f) +Qxzzy(f)] (10)

v′ = −2 [αxy(g) + ζxyz(g) +Qxzzy(g)] (11)

w = +2
[
α
′

xy(g) + ζ
′

xyz(g) +Q
′

xzzy(g)
]

(12)

w′ = −2
[
α
′

xy(f) + ζ
′

xyz(f) +Q
′

xzzy(f)
]
. (13)

As detailed in Appendix A1, f and g refer to the dispersive
and absorptive lineshapes respectively. It will appear in the
following sections that, for biaxial crystals, the quantity
[uv′−vu′] will play an important role. It could be easily
checked on starting from the various definitions found in
Appendix A1 that, due to the summation over all excited
states, we have a priori: [uv′−vu′] 6= 0.

Barron [4] has clearly established that the variation of
the Stokes vector |S (z)〉 of any incident beam as a function
of its penetration depth z is given by a linear differential
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equation of the type:

∂

∂z
|S (z)〉 = a [M] . |S (z)〉 (14)

in which: a = (1/2)ωNµ0c, µ0 being the permeability of
free space and N the number density of absorbing centers
[4]. The matrix [M] can be identified with a differential
Müller matrix to be written:

[M] =

 t′ u′ −v′ w
u′ t′ −w′ v
−v′ w′ t′ u
w −v −u t′

 . (15)

This is the point at which we deviate from the earlier anal-
ysis by Barron [4] since he converted immediately the four
Stokes parameters into physically relevant quantities, i.e.
the beam intensity I, the azimuth ϑ, the ellipticity η and
the degree of polarization Pd using classical definitions:

I =
1
2

[
εε0

µµ0

]1/2

S0 (16)

ϑ=
1
2

arctan
[
S2

S1

]
(17)

η=
1
2

arctan

[
S3√

S2
1 + S2

2

]
(18)

Pd=

[
S2

1 + S2
2 + S2

3

]1/2
S0

· (19)

The problem with the latter transformation is that the
set of coupled differential equations replacing equation
(14) is not anymore linear and the integration becomes
intractable except for uniaxial crystals. Our own strategy
was to integrate first equation (14).

2.2 Integrated Müller matrix [Φ (z)]

2.2.1 Uniaxial gyrotropic crystals

For a uniaxial gyrotropic crystal aligned in such a way that
the optical axis coincides with the direction of propagation
of the X-ray beam, the differential Müller matrix (15)
simplifies a lot since u = u′= v = v′= 0:

[M] =

 t
′ 0 0 w

0 t′ −w′ 0
0 w′ t′ 0
w 0 0 t′

 . (20)

The secular equation has the following roots:

λ1 = t′ − w; λ2 = t′ + w; λ3 = t′ − iw′; λ4 = t′ + iw′

and admits the following eigenvectors:

ρ1 =


1/
√

2
0
0

−1/
√

2

 ρ2 =


1/
√

2
0
0

+1/
√

2



ρ3 =


0

1/
√

2
i/
√

2
0

 ρ4 =


0

i/
√

2
1/
√

2
0

 . (21)

A general solution to the differential equation (14) is:

|S (z)〉= [Rv] [Dλ]
[
R−1
v

] ∣∣S0
〉

(22)

with the following definitions:

[Rv] =
[
ρ1 ρ2 ρ3 ρ4

]
;
∣∣S0
〉

= |S (z = 0)〉 ;
[Dλ]ij = δij exp (aλiz)

δij being the Kronecker symbol. Finally, the Stokes vector
|S (z)〉 = [Φ (z)]

∣∣S0
〉

can be written:S0 (z)
S1 (z)
S2 (z)
S3 (z)

 = exp (at′z)

×

cosh (awz) 0 0 sinh (awz)
0 cos (aw′z) − sin (aw′z) 0
0 sin (aw′z) cos (aw′z) 0

sinh (awz) 0 0 cosh (awz)


S

0
0

S0
1

S0
2

S0
3

.
(23)

2.2.2 Biaxial gyrotropic crystals

The first step is to solve a biquadratic secular equation of
matrix [M]:

[λ− t′]4 +P [λ− t′]2−Q2= 0 (24)

with:

P =
[
u2 − u′2

]
+
[
v2 − v′2

]
−
[
w2 − w′2

]
Q = uu′+vv′−ww′.

The eigenvalues of equation (24) can again be written:

λ1 = t′ −B′; λ2 = t′ +B′; λ3 = t′ − iA′; λ4 = t′ + iA′

but analytical expressions for A′ and B′ are getting rather
cumbersome. A solution to the differential equation (14)
can still be given by equation (22) provided that one is
able to develop analytically the eigenvector matrix [Rv]
and its inverse

[
R−1
v

]
. Note that the final result can still

be written:

|S (z)〉= [Φ (z)]
∣∣S0
〉

(25)



376 The European Physical Journal B

with matrix elements ϕij(z) that have all the same func-
tional form:

ϕij (z) = exp
(
at
′
z
)

×


[

1
2δij + β”

ij

]
cos
(
aA′z

)
−
[
γ
′

ij + γ”
ij

]
sin
(
aA′z

)
+
[

1
2δij − β”

ij

]
cosh

(
aB′z

)
+
[
γ
′

ij − γ”
ij

]
sinh

(
aB′z

)
·

(26)

For practical applications, we need analytical expressions
of the individual functions ϕij (z). As detailed in Ap-
pendix A2, one can save much algebra by defining complex
matrices: [M±] =

[
M
′
]
± i

[
M”
]

where
[
M
′
]

and
[
M”
]

are traceless matrices. Matrix [Φ] can then be easily ex-
panded as a series of successive powers in z.

3 X-ray dichroism and polarimetry
in transmission

3.1 Circular dichroism

3.1.1 Formulation

Circular dichroism is the difference in the absorption cross
sections measured during two consecutive experiments
carried out with an incident light that is respectively
left- and right-handed circularly polarized. For each ex-
periment, the polarization state is characterized by the
Stokes-Poincaré’s ratios defined according to the follow-
ing convention [4]:

P 0
1 =

S0
1

S0
0

=
I0◦

0 − I90◦

0

I0◦
0 + I90◦

0

; P 0
2 =

S0
2

S0
0

=
I45◦

0 − I135◦

0

I45◦
0 + I135◦

0

P 0
3 =

S0
3

S0
0

=
IR0 − IL0
IR0 + IL0

·

Of course, one would like to have two monochromatic
beams of strictly opposite polarization state, i.e. I0{
P 0

1 = P 0
2 = 0; P 0

3 = ±1
}

and therefore:

[
σL − σR

]
= ln

([
IR/IR

0

][
IL/IL

0

] ) = ln
(
φ00 (z) + φ03 (z)
φ00 (z)− φ03 (z)

)

= ln
(

1 +
2ξ03 (z)

1− ξ03 (z)

)
' 2ξ03 (27)

where: ξ0j (z) = φ0j (z) /φ00 (z). Unfortunately, such
“ideal conditions” are never met in the X-ray range: even
with a nearly perfect helical undulator source [16], one has
still to worry about the polarization transfer function of
the two-crystal monochromator which is getting very poor
when the Bragg angle approaches 45◦ with the practical
consequence that P 0

1 6= 0 and is rapidly increasing [17].
Furthermore, flipping the helicity of the photons emitted
by the source does not imply that the circular polarization

rate of the monochromatic X-ray beam is reversed since
what is monitored downstream with respect to a two crys-
tal monochromator is a complicated change of polarization
state [1]:{
P h

1 , P
h
2 ,+P

h
3

}
Source

⇐⇒
{
P h

1 , P
h
2 ,−P h

3

}
Source

⇓ [Monochromator]{
P 0

1 , P
0
2 ,+P

0
3

}
⇐⇒

{
P 0

1 , P
0
2 (1− ε2) ,−P 0

3 (1− ε3)
}

where ε2,3 become significant as soon as P 0
2 6= 0 (which

is most often the case...). Neglecting again the non linear
terms with respect to ξ03, the apparent circular dichroism
has, in practice, to be reformulated as:

[
σL − σR

]
≈ 2ξ03P

0
3 (1− ε3)

1 + ξ01P 0
1 + ξ02P 0

2

+
ξ02ε2P

0
2

1 + ξ01P 0
1 + ξ02P 0

2

·

(28)

Thus, in biaxial crystals, the measured circular dichroism
is most often contaminated with unwanted linear dichro-
ism due to the second term in equation (28). The latter is
usually large enough to swamp completely the tiny contri-
bution of gyrotropy. Note that the denominator may also
induce a second order correction if the experiments are
carried out with elliptically polarized photons.

3.1.2 Uniaxial crystals with the beam propagating along
the optical axis

Since: φ01 (z) = φ02 (z) = 0, we have ξ01 (z) = ξ02 (z) = 0.
As a consequence, there cannot be any contamination by
linear dichroism. Furthermore, one directly obtains from
(23): ξ03 (z) = tanh (awz) and, in full agreement with ref-
erence [4], the XCD signal is given by:[

σL − σR
]
≈ 2 (awd)P 0

3 (1− ε3/2) (29)

where d is the crystal thickness.

3.1.3 Biaxial crystals

Let us first restrict our analysis to the simplest case of ex-
periments performed under ideal conditions (P 0

1 = P 0
2 =

0; P 0
3 = ±1). Direct substitution of equation (27) with the

series expansion detailed in Appendix A2 yields up to the
third order:[
σL − σR

]
≈{

2 (awd)− (ad)2 [uv′ − vu′]
−1

3
(ad)3 [

w
(
u2 + v2 + 2u′2 + 2v′2

)
+ w′ (uu′ + vv′)

]}·
(30)

The first order term of equation (30) is the same as for
uniaxial crystals and characterizes the crystal gyrotropy.
However, even under ideal conditions, i.e. in the absence
of unwanted linear dichroism, there is a second order term
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∆ϑ (z) ≈

8>><
>>:

−1

2
ad (v′−w′) + 1

4
(ad)2 [u′(v′−w′)−u(v − w)]

+
1

12
(ad)3

�
v′(u2−u′2−v2+v′2 −w2 + w′2) + 2v(uu′−vv′−ww′)
−w′

�
u2−u′2 − 2v2 + 2v′2

�
− 2w (uu′−2vv′)

�
9>>=
>>;
· (36)

proportional to [uv′ − vu′] which can generate XCD even
in the case of non-gyrotropic crystals: we may identify
this term with the “crystal optics effect” predicted by
Machavariani [7] using a different formalism. It is also
noteworthy that the “absorptive” (w) and “dispersive”
(w′) parts of the gyrotropy tensor start to mix up in the
third order term. What is however most striking in equa-
tion (30) is the decomposition into terms of odd parity
related to gyrotropy, and terms of even parity which are
independent of gyrotropy. One could envisage to separate
experimentally the two contributions with a piezoelectric,
gyrotropic crystal: let one assume that the crystal is elec-
trically excited at some modulation frequency ωM; then
the linear and quadratic terms could be discriminated by
analyzing the dichroism response either at ωM or 2ωM.
This is unfortunately unrealistic in the X-ray range.

3.2 Linear Dichroism in biaxial crystals

As already emphasized in the previous section, linear
dichroism is expected to contaminate all XCD exper-
iments performed on biaxial crystals as soon as the
Poincaré component P2 of the source is not strictly equal
to zero. We want to point out here that standard XLD
spectra also contain hidden information on gyrotropy. Let
us first transpose equation (27) for linear dichroism:

[
σ90◦ − σ0◦

]
= ln

(
ϕ00 (z) + φ01 (z)
ϕ00 (z)− φ01 (z)

)
= ln

(
1 +

2ξ01 (z)
1− ξ01 (z)

)
(31)

[
σ135◦ − σ45◦

]
= ln

(
ϕ00 (z) + φ02 (z)
ϕ00 (z)− φ02 (z)

)
= ln

(
1 +

2ξ02 (z)
1− ξ02 (z)

)
(32)

where: |ξ0j | ≤ 1. To the same order of approximation as
in the previous section, one obtains:[

σ90◦ − σ0◦
]
≈{

2au′d−(ad)2 [vw+v′w′]

−1
3

(ad)3 [
u′(v2+w′2+2v′2+2w2)−u (vv′+ww′)

]}
(33)

[
σ135◦ − σ45◦

]
≈{
−2av′d−(ad)2 [uw + u′w′]

+
1
3

(ad)3 [
v′(u2+w′2+2u′2+2w2)−v (uu′+ww′)

]} ·
(34)

It would be erroneous to believe that Linear Dichroism
is totally insensitive to crystal gyrotropy: the second or-
der terms in equations (33, 34) are involving both w and
w′. It is quite noteworthy that, exactly as in the case of
XCD, the second order term involves the product of a dis-
persive lineshape (f) by an absorptive lineshape (g). As
regards the third order term, let us observe that the terms
in
{
w2, w′2, ww′

}
are small in comparison with the terms

of same order referring to the anisotropy of dipolar polar-
izability

{
u2, u′2, uu′

}
or
{
v2, v′2, vv′

}
so that the former

can be neglected. Anyhow, no reliable information on gy-
rotropy can be extracted from XLD experiments unless
the anisotropy in the first order polarizability is known
with a very high accuracy.

3.3 Rotatory power

Optical rotation is a very weak effect in the X-ray
range [18,19], at least for uniaxial crystals. It is therefore
desirable to carry out such a delicate experiment with an
X-ray beam featuring a “pure” polarization state such as{
P 0

1 = 1; P 0
2 = P 0

3 = 0
}

. Typically, in the experiment re-
ported by Siddons et al. [20], the polarization state of the
incident beam was: P 0

1 = 1 − ε with ε of the order of
10−8. It results from equation (17) that the optical rota-
tion ∆ϑ (z) is given by:

∆ϑ (z) =
1
2

arctan
(
φ20 (z) + φ21 (z)P 0

1

φ10 (z) + φ11 (z)P 0
1

)
· (35)

To the same level of approximation as before, one obtains:

see equation (36) above

The latter expression simplifies a lot in the case a uniaxial
crystal with the beam propagating along the direction of
the optical axis because u = u′= v = v′= 0:

∆ϑ (z) ≈ 1
2
aw′d. (37)

The latter result is perfectly consistent with equation (23).
Note that it is also fully consistent with a well known re-
sult of classical optics in the visible range: linear dichroism
will induce a significant optical rotation in non-gyrotropic
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crystals (w = w′ = 0) as soon as the absorption is not
isotropic in the plane perpendicular to the direction of
propagation of the incident beam. In view of the complex-
ity of (36), it appears practically hopeless to sort out the
contribution of gyrotropy in the case of biaxial crystals
and CD experiments look preferable.

3.4 Circular polarimetry

It may be tempting to analyze directly the polarization
state of a transmitted beam in order to access to the indi-
vidual components Sj(d). With the recent availability of
X-ray quarter-wave plates [21–25], circularly polarized X-
ray photons can be converted with a good efficiency into
linearly polarized ones with a polarization vector oriented
in any desired direction: the latter component can then be
selected with a linear polarimeter exploiting either coher-
ent (i.e. Bragg diffraction at 45◦) or incoherent scattering
at 90◦. As discussed elsewhere, circular polarimetry can be
performed either upstream or downstream with respect to
the monochromator: in the former case, one may get rid of
the poor polarization transfer of the monochromator and
fully exploit the high circular polarization rate of helical
undulator sources [25]. As far as X-ray gyrotropy is con-
cerned, the quantity of interest turns out to be the inverse
of the circular asymmetry ratio denoted hereafter ρ3 (z):

1
ρ3 (z)

=
SR

3 (z) + SL
3 (z)

SR
3 (z)− SL

3 (z)

=
ϕ30 (z) + ϕ31 (z)P 0

1 + ϕ32 (z)P 0
2 (1− ε2)

ϕ33 (z)P 0
3 (1− ε3) + ϕ32 (z) ε2P 0

2

(38)

or to some degree of approximation:

1
ρ3 (z)

≈ 1
P 0

3

ξ30

(
1 + ε3 − ε2P

0
2 ξ32

)
+ ξ31

P 0
1

P 0
3

+ξ32
P 0

2

P 0
3

(1− ε2) . (39)

Thus, under ideal conditions
(
P 0

1 = P 0
2 = 0; P 0

3 = 1
)
, one

obtains:
1

ρ3 (z)
≈{

awd− 1
2 (ad)2[u′v − uv′]

+ 1
6 (ad)3[w(2u2+2v2+u′2+v′2)−w′(uu′+vv′)−2w3]

}
·

(40)

Up to the second order, the information content of circular
polarimetry is then, within a factor 1/2, strictly equivalent
to the information currently available from XCD experi-
ments and there is no valuable additional information to
be extracted from the third order term.

4 Fluorescence detected dichroism

The backscattering geometry of the experiment reported
in [1] is illustrated with Figure 1. The wavevector of the

incident X-ray beam k [0, 0, 1] is defined with respect to
the laboratory coordinate axes {x, y, z}(1) whereas the
wavevector of the emitted X-ray fluorescence photons kF

[0, 0, 1] is defined with respect to another coordinate sys-
tem {x′, y′, z′}(2). The two coordinate systems transform
into one another by a rotation R (φ) around the normal
to the scattering plane {k,kF}. This is the appropriate
point at which to recall that a tensor component Tαβγ
will transform in rotation R as:

Tλµν(x′, y′, z′) = Lλα(R)Lµβ(R)Lνγ(R)Tαβγ(x, y, z)
(41)

where the factors Lµβ (R) are the direction cosines which
specify the orientation of the new set of axes with respect
to the old ones. We will use extensively equation (41) be-
low.

4.1 Formulation of the fluorescence signal

We will restrict our analysis to the case of a spontaneous
X-ray fluorescence emission associated with a radiative
decay of the core hole created by the primary absorption
of a polarized incident X-ray photon. Anisotropic Reso-
nant Inelastic X-ray Scattering (RIXS) processes would
require a specific theoretical framework and will be con-
sidered elsewhere. Thus, the fluorescence emitted by an
ultrathin slice of crystal of thickness ∆z and correspond-
ing to a penetration depth z will be characterized by a
Stokes vector |SF〉 satisfying the differential equation:

∂

∂z
|SF (z′ = 0)〉 =

[
ΓF
] ∂
∂z

∣∣∣S(1) (z)
〉

= a
[
ΓF
] [

M(1)
] ∣∣∣S(1) (z)

〉
(42)

where, the superscripts (1) or (2) refer to the coordinate
systems {x, y, z}(1) or {x′, y′, z′}(2). Here

[
ΓF
]

is a diago-
nal 4×4 matrix describing the quantum yield of polarized
fluorescence emission and will be defined in more detail
in the next section and in Appendix A3. We need to de-
scribe the reabsorption of the fluorescence photons inside
the crystal: this requires us to introduce another Müller
matrix [Φ(2)] so that:

∂

∂z
|SF (z′)〉 =

1
Lz′z

[
Φ(2) (z′)

] ∂
∂z
|SF (z′ = 0)〉

=
a

Lz′z

[
Φ(2) (z′)

] [
ΓF
] [

M(1)
] ∣∣∣S(1) (z)

〉
(43)

or:

∂

∂z
|SFj (z′)〉 =

a

Lz′z

3∑
i=0

φ
(2)
jβ (z′)ΓF

ββm
(1)
βαφ

(1)
αi (z)

[
P 0
i S

0
0

](1)
. (44)
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z(1)

x(1) x(2)

y(1)

scattering plane 
{y(1), z(1)}

k [0,0,1]
Incident beam

y(1)

Fluorescence
kF[0,0,1]

z(2)

y(2)

crystal

δz(1)

φ−π

Detector
direction

Fig. 1. Geometry for Fluorescence detected X-ray Natural Circular Dichroism (Fd-XNCD) experiments. Note that the optical
axis of the crystal is colinear with the wavevector k [0, 0, 1] of the incident beam defined with respect to the laboratory coordinate

system {x, y, z}(1), whereas the wavevector kF [0, 0, 1] relative to the X-ray fluorescence photons is defined with respect to the

secondary coordinate system{x, y, z}(2) .

As long as the polarization of the fluorescence emission is
not analyzed, only the j = 0 component is retained and
the fluorescence signal is given by:

IF =

a
[
S0

0

](1)

Lz′z

∫ d

0

dz
3∑
i=0

φ
(2)
0β (z)ΓF

ββm
(1)
βαφ

(1)
αi (z)

[
P 0
i

](1)
.

(45)

The main difficulty is thus to calculate 16 integrals of the
type:

Ψαβγ =
∫ d

0

dz
[
φ

(2)
0γ (z)φ(1)

βα (z)
]
. (46)

Fortunately, in most practical cases, the reabsorption pro-
cess can be taken as isotropic and matrix [M(2)] reduces to
the scalar term t′(2) whereas φ(2)

0γ = δ0γ exp
(
azt′(2)

)
: this

is because a strongly anisotropic absorption can hardly
be observed outside the typical energy range of X-ray Ab-
sorption Near Edge (XANES) spectra whereas the energy
EF of all fluorescence emission lines is systematically lower
than the energy of the corresponding excitation edge. One
might certainly find examples where a fluorescence line is
interfering with another absorption edge at lower energy
but such a complicated situation will not be considered
here. Let us also keep in mind that isotropic reabsorption
may not hold true in the case of RIXS.

4.2 Polarization of the emitted fluorescence photons

The emitted fluorescence photons may have a significant
degree of polarization: this implies that

[
ΓF
]

is not a
scalar but is a tensor property of the crystal. As shown
by equation (45), we are interested here only in the four
diagonal matrix elements: ΓF

jj which are proportional to
the four components of a coherence vector as defined by
Born and Wolf [26,27]:

ΓF
00 = γ0

〈
EF
x′E

F∗
x′ +EF

y′E
F∗
y′
〉

= γ0βF 〈−t′F (g)〉(1) (47)

ΓF
11 = γ1

〈
EF
x′E

F∗
x′ −EF

y′E
F∗
y′
〉
ΓF

11 =γ1βF 〈−u′F (g)〉(1) (48)

ΓF
22 = γ2

〈
−
[
EF
x′E

F∗
y′ +EF

y′E
F∗
x′
]〉
ΓF

22 =−γ2βF 〈−v′F (g)〉(1)

(49)

ΓF
33 = γ3

〈
−i
[
EF
x′E

F∗
y′ −EF

y′E
F∗
x′
]〉
ΓF

33 = γ3βF 〈wF (g)〉(1)

(50)

where the brackets remind us that a configuration aver-
age has to be taken over all emitting sites. Equivalently,
the matrix elements ΓF

jj can be expressed in terms of the
absorptive components t′F (g), u′F (g), v′F (g) and wF (g) of
the complex tensors {t∗F, u∗F, v∗F, w∗F, } characterizing now
the emission process itself. Detailed expressions of t′F (g),
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Table 1. Extended Stokes components in emission geometry without polarization analysis

Fluorescence detected XCD

S
3
0 ≈ −

2I0P
0
3 Γ

F
00

cosφ

8<
:

wµ+ [t′w + u′v − uv′]µ2

+
�
t′ (u′v − uv′) +w

�
u′2 − u2 + v′2 − v2 + w2

�
− w′ (uu′ + vv′)

�
µ3

9=
; (57)

Fluorescence detected XLD

S
1
0 ≈ −

2I0P
0
1 Γ

F
00

cosφ

8<
:

u′µ+ [t′u′ − (vw + v′w′)]µ2

−
�
t′ (vw + v′w′)− u′

�
v′2 − v2 + u′2 + w2 − w′2

�
− u (vv′ − ww′)

�
µ3

9=
; (58)

S
2
0 ≈ −

2I0P
0
2 Γ

F
00

cosφ

8<
:

−v′µ− [t′v′ + uw + u′w′]µ2

−
�
t′ (uw + u′w′) + v′

�
u′2 − u2 + v′2 + w2 −w′2

�
+ v (uu′ − ww′)

�
µ3

9=
; · (59)

u′F (g), v′F (g) and wF (g) are given in Appendix A3. Note
that equation (50) would predict the existence of X-ray
gyrotropic emission in addition to X-ray gyrotropic ab-
sorption. Such a gyrotropic emission is still unknown in
the X-ray range: it would be the X-ray analog of the so-
called Circularly Polarized Luminescence (CPL) which is
a well established chiroptical spectroscopy in the visible
range [28–30]. Unfortunately, the only terms which might
contribute to a gyrotropic emission in the X-ray range
are again electric dipole-electric quadrupole interference
terms (E1.E2) which vanish in powder or solutions. More-
over, since the (E1.E2) interference terms probe the over-
lap in energy of states of different parity [3], there is very
little or no hope to detect any gyrotropic emission for
fluorescence lines involving only transitions between deep
atomic core levels (e.g. the Kα lines). Gyrotropic emission
could then be detectable only in very few cases: (i) for flu-
orescence lines associated with transitions in which a deep
core hole is filled by valence electrons; (ii) for RIXS pro-
cesses which fall out of the scope of the present paper. Let
us recall that a quite significant degree of circular polariza-
tion has already been measured in X-ray Excited Optical
Luminescence (XEOL) spectra [31].

4.3 Fluorescence detected dichroism spectra

In this section, we will concentrate first on fluorescence
detected dichroism spectra recorded without polarization
analysis because such experiments have already been per-
formed. For the sake of clarity, it is most convenient to
define “extended” Stokes components SI(i)

F(j) with two in-
dices: the lower index would characterize the emitted flu-
orescence beam and the upper one would refer to the inci-
dent beam. As long as we do not analyze the polarization
states of the emitted photons, we are concerned only with

the three components:

S1
0 = S

I(90◦)
F(0) − S

I(0◦)
F(0) (51)

S2
0 = S

I(135◦)
F(0) − SI(45◦)

F(0) (52)

S3
0 = S

I(L)
F(0) − S

I(R)
F(0). (53)

For infinitely thick samples, one would show that:

Si0 = −2aI0P 0
i Γ

F
00

Lz′z

∫ ∞
0

dz exp (−az/µ) [MΦ]0i (54)

where we have introduced the simplifying notation: 1/µ =
−
[
t′(1) + t′(2)

]
. Combining the following identities:

∫ ∞
0

dz exp (−az/µ) cos (azλ) =
µ

a (1 + λ2µ2)
(55)

∫ ∞
0

dz exp (−az/µ) sin (azλ) =
λµ2

a (1 + λ2µ2)
(56)

with the series expansion of [Φ (z)] developed in Ap-
pendix A2, one is led to the final results listed in Table 1
(Eqs. (57-59)).

By comparing equation (57) with equation (30), it will
immediately appear that Fd-CD is strictly proportional
to transmission circular dichroism in the case of uniaxial
crystals when the incident beam propagates along the di-
rection of the optical axis. In the case of biaxial crystals,
this proportionality still holds true for the first order term
with respect to µ. Regarding the second and third order
terms, it appears again that non-gyrotropic crystals with
w = w′ = 0 should exhibit non-zero Fd-XCD spectra if
(u′v − v′u) 6= 0: this was precisely the condition discussed
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earlier in Section 3 to observe the so-called “crystal optics
effect” of Machavariani [7]. It is however quite remarkable
that in the case of gyrotropic crystals, the leading second
order term of S3

0 should be wt′µ2 (which is proportional
to the isotropic absorption t′) rather than (u′v − v′u)µ2.
This additional term wt′µ2 does not exist in transmission
CD experiments but it makes the analyses far more com-
fortable if one is interested in sorting out clean gyrotropy
spectra: in other terms, Fd-XCD offers the significant ad-
vantage over XCD to depress the relative contribution of
the unwanted “crystal optics effects”. Of course, one could
draw symmetrical conclusions if one compares the ana-
lytical expressions derived for Fd-XLD and transmission
linear dichroism experiments.

The previous discussion concerned “ideal experimental
conditions”, e.g. P 0

1 = P 0
2 = 0;P 0

3 = ±1. Indeed, Fd-XCD
spectra of biaxial crystals are, under real experimental
conditions, also systematically contaminated by unwanted
linear dichroism signatures:[

S3
0

]
apparent

= (1− ε3/2)S3
0 + ε2S2

0. (60)

4.4 Polarization analysis of emission spectra

We may investigate next whether new information could
be extracted from a careful analysis of the polarization
state of the fluorescence photons. The following integrals
have now to be calculated:

Sij = −
2aI0P 0

i Γ
F
jj

Lz′z

∫ ∞
0

dz exp (−az/µ) [MΦ]ji (61)

and, to the same level of approximation as before, one
would derive the following results:

4.4.1 Incident X-ray beam circularly polarized

S3
1 ≈ −

2I0P 0
3 Γ

F
11

cosφ
{
vµ+ [t′v + u′w − uw′]µ2

}
(62)

S3
2 ≈ −

2I0P 0
3 Γ

F
22

cosφ
{
uµ+ [t′u− v′w + vw′]µ2

}
(63)

S3
3 ≈ −

2I0P 0
3 Γ

F
33

cosφ
{
t′µ−

[
u2 + v2 − w2

]
µ2
}
. (64)

4.4.2 Incident X-ray beam linearly polarized (90◦−0◦)

S1
1 ≈ −

2I0P 0
1 Γ

F
11

cosφ
{
t′µ+

[
u′2 − v2 − w′2

]
µ2
}

(65)

S1
2 ≈ −

2I0P 0
1 Γ

F
22

cosφ
{
w′µ+ [t′w′ − u′v′ − uv]µ2

}
(66)

S1
3 ≈ −

2I0P 0
1 Γ

F
33

cosφ
{
−vµ− [t′v − u′w + uw′]µ2

}
. (67)

Table 2. Electric polarizability tensors contributing to the
first order inµ in the absorption and emission processes. Let
us recall that t′, u′, v′ and w refer to absorptive parts and u, v
and w′ to dispersive parts. Do not confuse t′(2) and t′F which
refer to different matrix elements: the former is describing the
reabsorption of the fluorescence photons at energy EF whereas
the latter describes the spontaneous emission process.

j\i i = 1 i = 2 i = 3 ΓF
jj

j = 0 u′ −v′ w −t′F
j = 1 t′ w′ −v −u′F
j = 2 −w′ t′ −u −v′F
j = 3 v u t′ wF

4.4.3 Incident X-ray beam linearly polarized (135◦−45◦)

S2
1 ≈ −

2I0P 0
2 Γ

F
11

cosφ
{
−w′µ−[t′w′+u′v′+uv]µ2

}
(68)

S2
2 ≈ −

2I0P 0
2 Γ

F
22

cosφ
{
t′µ+

[
v′2 − u2 − w′2

]
µ2
}

(69)

S2
3 ≈ −

2I0P 0
2 Γ

F
33

cosφ
{
−uµ− [t′u+ v′w − vw′]µ2

}
. (70)

Indeed, the 12 extended Stokes components Sij listed
above will again simplify a lot in the case of uniaxial crys-
tals since only the first order terms with respect to µ will
survive. We have regrouped in Table 2 the polarizability
tensors contributing to the first order terms for the various
combinations of indices i and j.

Note that in the case of uniaxial crystals, u = u′ = 0
and v = v′ = 0 for what concerns the primary absorption
process but ΓF

11 6= 0, ΓF
22 6= 0 since, in a gyrotropic crystal,

the components of the polarizability tensor are different
in directions respectively parallel or perpendicular to the
optical axis. One could use a linearly polarized incident
beam (selecting for instance: i = 2) and analyze the rele-
vant linearly polarized components of the emitted photons
(e.g. j = 1 if i = 2): this experiment should give access
to w′(f), i.e. the dispersive part of the gyrotropy tensor.
The information available from the latter experiment is
then strictly equivalent to what can be learned from opti-
cal rotation measurements in transmission. A considerable
advantage of such “Fluorescence detected X-ray Optical
Rotation” (Fd-XOR) experiments is indeed the possibil-
ity to exploit this technique even with thick crystals for
which conventional XOR measurements are impossible.
Actually, what would be measured in Fd-XOR is not w′(f)
but the product ΓF

11w
′(f) which may also depend on the

anisotropy of the emission process. One could circumvent
the latter complication by performing the same polariza-
tion analysis with both i = 1 and i = 2 since the ra-
tio:

[
S2

1/S1
1

]
' w′ (f) /t′ (g) would be independent of the

anisotropy of the emission process.
Even though the case of biaxial crystals looks inher-

ently far more complicated, it might still be attractive
to try to measure the three components Si3. The last
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one, (i.e. i = 3) would give us a unique, unambigu-
ous access to gyrotropy in the emission channel. On the
other hand, one might envisage to disentangle the con-
tribution of the so-called “crystal optics effect” because:[
S1

3S1
0 + S2

3S2
0

]
/S3

3 ' − [u′v − v′u]ΓF
00/t

′. Unfortunately,
at the present stage of the technique, X-ray fluorescence
emission with polarization analysis looks like an experi-
mental tour de force, especially in terms of signal-to-noise
ratio, and it remains to be proved that one can really mea-
sure this second order contribution.

5 Discussion

It is well known from general quantum mechanics that
absorption processes are truly measurable only if they are
associated with anti-hermitian, time-even tensor proper-
ties. Since this condition has to be satisfied by all tensor
properties contributing to linear or circular dichroism, we
feel essential to cross-check the consistency of our results.

5.1 Antisymmetric character of dichroism tensors

As illustrated by equation (30), the tensor property re-
sponsible for circular dichroism is to the first order w(g)
which, according to equation (12), is the sum of 3 an-
tisymmetric tensors. One may easily establish the anti-
symmetric character of all higher order terms: typically
the quantity [u(g)v′(f) − v(g)u′(f)] will change its sign
on exchanging x and y because this term is, by defini-
tion, the cross product of symmetric tensors {v, v′} by
antisymmetric ones {u, u′}. The same sort of considera-
tion can be extended to the various terms contributing to
linear dichroism: e.g. {u, u′} reverse their sign on exchang-
ing x and y and are thus antisymmetric. On the contrary,
{v, v′} which are symmetrical tensors cannot contribute
to any measurable linear dichroism unless the polariza-
tion vector is rotated by ±45◦ so that the roles of {u, u′}
and {v, v′} are finally exchanged.

5.2 Rotational invariance of circular dichroism around
the incident beam direction

This is a well known property and a common argument
used to reject possible instrumental artifacts. Using equa-
tion (41), it is straightforward to show that w(g), w′(f)
and [u(g)v′(f) − v(g)u′(f)] are invariant in any rotation
around the direction of the wavevector k. Thus, there
is absolutely no hope to discriminate between w(g) and
[u(g)v′(f) − v(g)u′(f)] by simply rotating the crystal
around the direction of the incident beam. This result is
indeed comforting our interpretation that the cross term
[u(g)v′(f)− v(g)u′(f)] is to be identified with the disper-
sion term derived by Born and Huang in a dielectric crys-
tal [32]: as pointed out only very recently by Nelson [33],
this second order term was the only one found by Born
and Huang because they neglected in their theory the in-
teraction of electric dipoles with either magnetic dipoles
or electric quadrupoles.

5.3 Time-reversality

As emphasized by Barron [4] and others [35,36], the ten-
sors {αaβ ; ζ′αβγ ; Qaγγβ} have time even parity with re-
spect to the action of the time-reversal operator: {αaβ ;
Qaγγβ} are then responsible for natural linear dichroism
whereas {ζ′αβγ } contributing to w is responsible for nat-
ural circular dichroism. In contrast, {α′αβ ; ζαβγ ; Q′

aγγβ
}

have time odd parity with respect to the action of the time-
reversal operator and cannot contribute to any dichroism
unless another time-odd perturbation is present: this may
be the case of an external magnetic field or of an inter-
nal exchange field. In other words, { α′αβ ; ζαβγ ; Q′

aγγβ
}

will induce magnetic linear (or magnetic circular) dichro-
isms provided that there is a magnetic field oriented along
the direction of propagation of the incident beam. It is
precisely well documented that α′αβ and Q′

aγγβ
are con-

tributing to X-ray magnetic circular dichroism. It has
also been suggested a long time ago by Brown et al.
[34] and by other groups [4,35,36] that the symmetrical
part of the gyrotropy tensor ζαβγ could be responsible for
“non-reciprocal” birefringence in antiferromagnetic crys-
tals which have a non-zero magnetoelectric tensor. The
reality of this effect was confirmed only quite recently at
optical wavelengths [37]. Since ζαβγ contributes to the def-
inition of the anisotropy tensor u′ in equation (9), our
analysis would predict that the “non-reciprocal” gyrotropy
should generate a non-reciprocal X-ray magnetic linear
dichroism. Even though the “non-reciprocal” gyrotropy
tensor cannot contribute to any first order X-ray circular
dichroism, we think that circular dichroism could still arise
through the second order cross term [uv′−vu′] which com-
bines products of the type: ζxyz(f)αxx(g); ζxyz(f) αyy(g);
ζxxz(g) αxy(f); ζyyz(g) αxy(f); ζxyz(g) αxx(f); ζxyz(g)
αyy(f); ζxxz(f) αxy(g); ζyyz(f) αxy(g) and in which the
dipolar contribution associated with ααβ (g) may be large.

6 Conclusion

For the first time, we have proposed a unified formulation
of the differential absorption and differential change of
polarization state of a polarized X-ray beam propagating
inside a biaxial gyrotropic crystal. The starting point of
this analysis is a 4×4 differential Müller matrix, the 16 ele-
ments of which are related to the anisotropic components
of the multipolar polarizability tensors at the absorbing
site. Our primary goal was to derive analytical expressions
for X-ray linear and circular dichroism, optical rotation
and circular polarimetry in a transmission configuration.
The same formalism has been extended to encompass the
case of Fluorescence detected X-ray dichroism, which is
a technique of much more practical interest. Analytical
expressions have been obtained for the “extended” Stokes
components Sij of the emitted photons: our results confirm
that more information could be obtained if one could an-
alyze –at least– the linear polarization components of the
X-ray fluorescence emitted in a specific direction.
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In the case of biaxial crystals, we face serious prob-
lems since the tiny effects of X-ray gyrotropy in circular
dichroism may be completely swamped out by large linear
dichroism signals mostly due to the imperfect polariza-
tion transfer of X-ray monochromators. It is shown that
Fd-XCD spectra are not anymore strictly proportional to
transmission XCD spectra. As far as circular dichroism
is concerned, one has also to take into account a possible
contribution of second order terms: even in the case of non-
gyrotropic crystals, one should record non-zero XCD spec-
tra whenever the condition: [u(g)v′(f)− v(g)u′(f)] 6= 0 is
satisfied. Since this contribution is also invariant in any
rotation around the direction of the incident beam, it ap-
pears a priori fairly difficult to discriminate normal gy-
rotropy effects from the latter “crystal optics effect” the
existence of which was predicted by Machavariani [7]. In-
terestingly, the relative importance of this contribution
has been found to be depressed in Fd-XCD spectra.

Last but not least, we checked the consistency of our
results with respect to antisymmetry and time reversal
properties. Our formulation of linear and circular dichro-
ism in gyrotropic crystals includes terms of odd parity
with respect to the action of the time reversal operator:
the terms responsible for X-ray magnetic circular dichro-
ism in anisotropic crystals are well identified but we obtain
additional terms which cannot contribute to any natural
X-ray linear nor circular dichroism but may well cause
non-reciprocal X-ray gyrotropy effects in antiferromag-
netic crystals.

Appendix A1

Following Buckingham [10], one may define at the absorb-
ing site a variety of multipolar polarizability tensor com-
ponents:

ααβ (f∗) = +αβα (f∗)

=
2
}
∑
j

f∗ω∗ij Re {〈i |E1α| j〉 〈j |E1β | i〉} (71)

α
′

αβ (f∗) = −α′βα (f∗)

= −2
}
∑
j

f∗ω Im
{
〈i |E1α| j〉

〈
j
∣∣E1β

∣∣ i〉} (72)

Aαβγ (f∗) = +Aαγβ (f∗)

=
2
}
∑
j

f∗ω∗ij Re
{
〈i |E1α | j〉

〈
j
∣∣E2βγ

∣∣ i〉}(73)

A
′

αβγ (f∗) = +A
′

αγβ (f∗)

= −2
}
∑
j

f∗ω Im {〈i |E1α| j〉 〈j |E2βγ | i〉} (74)

Gαβ (f∗) =
2
}
∑
j

f∗ω∗ij Re {〈i |E1α| j〉 〈j |M1β | i〉} (75)

G
′

αβ (f∗) = −2
}
∑
j

f∗ω Im {〈i |E1α| j〉 〈j |M1β| i〉}(76)

Cαβγδ (f∗) = +Cγδαβ (f∗)

=
2
3}
∑
j

f∗ω∗ij Re {〈i |E2αβ | j〉 〈j |E2γδ| i〉} (77)

C
′

αβγδ (f∗) = −C′γδαβ (f∗)

=
2
3}
∑
j

f∗ω Im {〈i |E2αβ | j〉 〈j |E2γδ| i〉} (78)

where E1, M1 and E2 refer to the electric dipole, magnetic
dipole and electric quadrupole operators. In the case of
mixed multipole components (73, 74; 75, 76), there is no
direct separation into symmetric / antisymmetric parts
with respect to the exchange of the first two indices and
it is therefore much convenient to generate two additional
tensors which are symmetric or antisymmetric with re-
spect to the exchange of these indices:

ζαβγ = +ζβαγ

= +
1
c

{ω
3

[
A
′

αβγ+A
′

βαγ

]
+εδγαGβδ+εδγβGαδ

}
(79)

ζ
′

αβγ = −ζ′βαγ

= −1
c

{ω
3

[Aαβγ−Aβαγ]+εδγαG
′

βδ−εδγβG
′

αδ

}
(80)

where c is the velocity of light and εαβγ is the Levi-
Civita alternating tensor. The tensor (80) is to be identi-
fied with a microscopic gyrotropy tensor whereas the ten-
sor (79) may be called “non-reciprocal gyrotropy tensor”
for reasons which are discussed in Section 5. In equations
(71–80), the complex function f∗ is defined by:

f∗ = f + ig

=
(ωij)

2−ω2[
(ωij)

2−ω2
]2

+[ωΓj ]
2

+i
ωΓj[

(ωij)
2−ω2

]2
+[ωΓj ]

2
(81)

where f and g are the well known dispersive and absorp-
tive lineshapes. One may also define the complex transi-
tion energy: ω∗ij = ωij− iΓj/2, where Γj is the full width
at half maximum (fwhm) of a Lorentzian lineshape and,
as far as X-ray absorption spectroscopy is concerned, the
latter parameter refers to the life time of the deep core
hole in the excited state. As discussed elsewhere [1,5], the
magnetic dipole (M1) transition matrix elements (TME)
are expected to be very small in the X-ray range but we
decided to maintain the terms (75, 76) for the sake of
completeness of the final results which may then be more
easily extrapolated into other energy ranges. On the other
hand, there is ample experimental evidence [5,11–15]
that X-ray absorption spectroscopy is sensitive to the pure
electric quadrupole (E2.E2) cross sections: this implies
that the terms (77, 78) cannot be neglected in the X-ray
range.

In the theory of refringent scattering developed by
Buckingham [10] or Barron [4], it is finally most con-
venient to introduce the following complex multipolar
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polarizability tensors α∗αβ , C∗αβγδ and ζ∗αβγ respectively
defined as:

α∗αβ =
[
ααβ(f) + α

′

αβ(g)
]

+i
[
ααβ(g)− α′αβ(f)

]
(82)

C∗αβγδ =
[
Cαβγδ(f)+C

′

αβγδ(g)
]
+i
[
Cαβγδ(g)−C′αβγδ(f)

]
(83)

ζ∗αβγ =
[
ζαβγ(f)+ζ

′

αβγ(g)
]
+i
[
ζαβ(g)−ζ′αβ(f)

]
. (84)

For the sake of simplifying the notations, it was found
preferable to replace C∗αγγβ in equation (1) with:

Q∗αγγβ=
(ω)2

3c2
C∗αγγβ.

Appendix A2

Let us define the matrix [M′], which is the differential
Müller matrix [M] of equation (15) but without the diag-
onal elements, and its associated matrix [M”] such as:

[M′] =

 0 u′ −v′ w
u′ 0 −w′ v
−v′ w′ 0 u
w −v −u 0

 [
M”
]

=

 0 −u v w′

−u 0 w v′

v −w 0 u′

w′ −v′ −u′ 0

 .
(85)

We may next define two conjugated complex matrices such
as: [M+] = [M′] + i [M”] and [M−] = [M′]− i [M”]. It is
then easy to check that the latter two matrices have the
remarkable properties:[

M+
]2 = −∆2 [Id]

[
M−]2 = −∆∗2 [Id] (86)

where: ∆2 = (u+iu′)2 + (v+iv′)2 − (w+iw′)2 and where
∆∗ is the complex conjugate of ∆. Therefore, any expo-
nential matrix of λ [M±] can be decomposed as the sum
of a term proportional to the identity matrix [Id], plus a
term proportional to [M±]. More precisely, we have:

exp
(
λ
[
M+

])
= cos (λ∆) [Id]+

1
∆

sin (λ∆)
[
M+

]
(87)

exp
(
λ
[
M−]) = cos (λ∆∗) [Id]+

1
∆∗

sin (λ∆∗)
[
M−] .(88)

Since [M+] and [M−] commute, it is straightforward to
show that a more convenient analytical formulation of
the integrated Müller matrix [Φ′ (z)] = exp (az [M′]) =
exp

(
1
2az [M+ + M−]

)
is:[

Φ′ (z)
]
=
{

cos (az∆/2) [Id]+
1
∆

sin (az∆/2)
[
M+

]}
×
{

cos (az∆∗/2) [Id]+
1
∆∗

sin (az∆∗/2)
[
M−]} . (89)

Indeed, the diagonal element of [M] can be reintroduced
in the final result by simply multiplying [Φ′ (z)] by the
exponential factor exp (azt′):

[Φ (z)] = exp (azt′) [Φ′ (z)] . (90)

The analytical formula derived in this paper are then
based on the fairly usual series expansions of the com-

plex functions: cos (az∆/2); cos (az∆∗/2); sin (az∆/2)
and sin (az∆∗/2).

Appendix A3

Our goal in this appendix is to make explicit the matrix
elements ΓF

jj . Starting with the definition of the coherence
vector by Born and Wolf [26,27], the four diagonal matrix
elements can be expressed in the crystal coordinate system
as:

ΓF
00 = γ0

〈[
EF
xE

F∗
x +EF

yE
F∗
y

]
−
[
EF
yE

F∗
y −EF

z E
F∗
z

]
sin2 φ

+
[
EF
yE

F∗
z +EF

z E
F∗
y

]
sinφ cosφ

〉
(91)

ΓF
11 = γ1

〈[
EF
xE

F∗
x −EF

yE
F∗
y

]
+
[
EF
yE

F∗
y −EF

z E
F∗
z

]
sin2 φ

+
[
EF
yE

F∗
z −EF

z E
F∗
y

]
sinφ cosφ

〉
(92)

ΓF
22 = γ2

〈
−
[
EF
xE

F∗
y +EF

yE
F∗
x

]
cosφ

−
[
EF
xE

F∗
z +EF

z E
F∗
x

]
sinφ

〉
(93)

ΓF
33 = γ3

〈
−i
[
EF
xE

F∗
y −EF

yE
F∗
x

]
cosφ

− i
[
EF
xE

F∗
z −EF

z E
F∗
x

]
sinφ

〉
(94)

where the scalar factors γi (δΩ/4π) are the quantum yields
of anisotropic fluorescence in a solid angle δΩ/4π. The lat-
ter solid angle is defined either by the angular acceptance
of the detector or by the acceptance of the crystal analyzer
when energy resolved emission spectra are recorded. Since
the coherent fluorescence intensities

〈
EF
αE

F∗
β

〉
are propor-

tional to the anisotropic transition probabilities, one may
write:

ΓF
00 = γ0βF 〈−t′F (g)〉(1) (95)

ΓF
11 = γ1βF 〈−u′F (g)〉(1) (96)

ΓF
22 = −γ2βF 〈−v′F (g)〉(1) (97)

ΓF
33 = γ3βF 〈wF (g)〉(1) (98)

where βF ∝ ω2
F is a conversion factor which is proportional

to the square of the fluorescence energy. By analogy with
equations (7–13), one may then write:

−t′F =

〈 [
αF
xx+αF

yy

]
−
[
αF
yy−αF

zz

]
sin2 φ+

[
αF
yz+αF

zy

]
sinφ cosφ

+
[
ζF
xxz+ζF

yyz

]
nz cos2 φ−

[
ζF
yyz−ζF

zzz

]
nz cos2 φ sin2 φ

+
[
ζF
xxy+ζF

yyy

]
ny sin2 φ−

[
ζF
yyy−ζF

zzy

]
ny sin4 φ

+2
[
ζF
yzz sinφ cosφ

]
nz cos2 φ+2

[
ζF
yzy sinφ cosφ

]
ny sin2 φ

〉

(99)

−u′F =

〈 [
αF
xx−αF

yy

]
+
[
αF
yy−αF

zz

]
sin2 φ−

[
αF
yz+αF

zy

]
sinφ cosφ

+
[
ζF
xxz−ζF

yyz

]
nz cos2 φ+

[
ζF
yyz−ζF

zzz

]
nz cos2 φ sin2 φ

+
[
ζF
xxy−ζF

yyy

]
ny sin2 φ+

[
ζF
yyy−ζF

zzy

]
ny sin4 φ

−2
[
ζF
yzz sinφ cosφ

]
nz cos2 φ−2

[
ζF
yzy sinφ cosφ

]
ny sin2 φ

〉

(100)
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−v′F =

〈 2αF
xy cosφ+ 2αF

xz sinφ
+2
[
ζF
xyz cosφ+ ζF

xzz sinφ
]
nz cos2 φ

+2
[
ζF
xyy cosφ+ ζF

xzy sinφ
]
ny sin2 φ

〉
(101)

wF =

〈 2α′Fxy cosφ+ 2α′Fxz sinφ
+2
[
ζ′Fxyz cosφ+ ζ′Fxzz sinφ

]
nz cos2 φ

+2
[
ζ′Fxyy cosφ+ ζ′Fxzy sinφ

]
ny sin2 φ

〉
. (102)

For simplicity, the “pure” electric quadrupole (E2.E2)
transition matrix elements have been deliberately omitted
in the latter equations. The brackets imply that one has
to take a configuration average over all emitting atoms:
anisotropic emission can thus only be observed in oriented
single crystals but certainly not in powders nor in solution.
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